In [ ]:
# Third-party
from astropy.io import ascii
import astropy.coordinates as coord
import astropy.units as u
import h5py
import matplotlib as mpl
import matplotlib.pyplot as pl
import numpy as np
pl.style.use('apw-notebook')
%matplotlib inline
from scipy import interpolate
from scipy.misc import logsumexp
from astroML.utils import log_multivariate_gaussian
In [ ]:
DM = 15.6
In [ ]:
iso_filename = "/Users/adrian/projects/globber/data/ngc5897/dartmouth_iso_ps1.dat"
iso = ascii.read(iso_filename, header_start=8)
In [ ]:
pl.figure(figsize=(4,8))
pl.scatter(iso['gP1']-iso['iP1'], iso['iP1']+DM, alpha=0.5)
pl.xlim(0,1.)
pl.ylim(21,17.5)
In [ ]:
interp = interpolate.interp1d(iso['iP1']+DM, iso['gP1']-iso['iP1'], kind='cubic')
In [ ]:
itrp_i = np.linspace(17., 21.5, 128)
itrp_gi = interp(itrp_i)
In [ ]:
pl.figure(figsize=(4,8))
pl.scatter(itrp_gi, itrp_i, alpha=0.5)
pl.xlim(0,1.)
pl.ylim(21,17.5)
In [ ]:
x = np.arange(0,1,0.02)
y = np.arange(17.5,21.,0.04)
shp = (y.size, x.size)
xygrid = np.vstack(list(map(np.ravel,np.meshgrid(x, y)))).T
In [ ]:
xymodel = np.vstack((itrp_gi,itrp_i)).T
xymodel.shape
In [ ]:
h = 0.03
V = np.diag([h]*2)**2
# W = np.array([[1, -1], # g-i
# [0, 1]]) # i magnitude
# # each covariance C = WCW^T
# V = np.einsum('mj,jk->mk', W, V)
# V = np.einsum('lk,mk->ml', W, V)
V
In [ ]:
ll = log_multivariate_gaussian(xygrid[:,np.newaxis], xymodel[np.newaxis], V)
ll = logsumexp(ll, axis=1)
ll.shape
In [ ]:
pl.figure(figsize=(4,8))
pl.pcolormesh(xygrid[:,0].reshape(shp), xygrid[:,1].reshape(shp),
np.exp(ll).reshape(shp), cmap='Blues')
pl.xlim(0,1.)
pl.ylim(21,17.5)
In [ ]:
XCov_filename = "/Users/adrian/projects/globber/data/ngc5897/XCov_med.h5"
In [ ]:
with h5py.File(XCov_filename, "r") as f:
bg_X = f['control']['X'][:]
bg_Cov = f['control']['Cov'][:]
idx = (bg_X[:,0] >= 17.) & (bg_X[:,0] <= 21.5) & (bg_X[:,2] >= -0.5) & (bg_X[:,2] <= 1.5)
bg_X = bg_X[idx]
bg_Cov = bg_Cov[idx]
bg_X = bg_X[::50,[2,0]]
bg_Cov = bg_Cov[::50,[2,0]][:,:,[2,0]]
In [ ]:
pl.figure(figsize=(4,8))
pl.plot(bg_X[:,0], bg_X[:,1], alpha=0.4, marker='.', ls='none')
pl.xlim(0,1.)
pl.ylim(21,17.5)
In [ ]:
bg_h = 0.025
bg_V = np.diag([bg_h]*2)**2
W = np.array([[1, -1], # g-i
[0, 1]]) # i magnitude
# each covariance C = WCW^T
bg_V = np.einsum('mj,jk->mk', W, bg_V)
bg_V = np.einsum('lk,mk->ml', W, bg_V)
bg_V
In [ ]:
_V = bg_Cov + bg_V[np.newaxis]
bg_ll = log_multivariate_gaussian(bg_X[np.newaxis], xygrid[:,np.newaxis], _V[np.newaxis])
bg_ll = logsumexp(bg_ll, axis=1)
bg_ll.shape
In [ ]:
pl.figure(figsize=(4,8))
pl.pcolormesh(xygrid[:,0].reshape(shp), xygrid[:,1].reshape(shp),
np.exp(bg_ll).reshape(shp), cmap='Blues')
pl.xlim(0,1.)
pl.ylim(21,17.5)
In [ ]:
pl.figure(figsize=(4,8))
pl.pcolormesh(xygrid[:,0].reshape(shp), xygrid[:,1].reshape(shp),
np.exp(ll - bg_ll).reshape(shp), cmap='Blues')
pl.xlim(0,1.)
pl.ylim(21,17.5)
In [ ]: